| | Background Work Supporting the Evaluation of Feasibility and Initial Design of an Interim Cap for the Aerovox Nearshore Area - 30MAR2017 | | | | | | | |----|--|---|---|--|--------------------------------|----------------------------|---------------------------| | | Information Requirement | Relevance | A. Scope of Work - Minimal | B. Scope of Work - Expanded | Lead(s) | Estimated
Schedule | Estimated Level of Effort | | | An initial approximation of interim cap performance objectives is key in fully scoping the information requirements 1-11 below. | | | | | | | | 1 | Physical characterization of the nearshore area including the full width of the waterway | - presentation of data
- impact of cap placement relative
to full waterway | - use existing bathymetery and GIS to create cross sections and calculate areas | • | Mike Morris +
Dan Groher | A. 1 week
B. 2 weeks | A. \$3K
B. \$14K | | 2 | 3D extent of DNAPL beneath the nearshore area | - determine the extent of required cap
- determine areas with seepage
potential | - use existing boring data to create conservative confirmed/probable and potential zones | to increase confidence in zone | Mike Morris +
Dan Groher | A. 1 week
B. 2 weeks | А. \$3К
В. \$31К | | | Groundwater discharge zones and discharge rates in the nearshore area | - design parameter for the cap
- assessment of potential alteration
of groundwater flow field by the
cap | - use existing groundwater flow data from the
Aerovox Phase 2 and 3 reports for screening
level assessment
- estimate conservative/"worst-case" potential
discharge scenarios to determine if there are
signficant data gaps | impace of the can | Mike Morris +
Dan Groher | A. 2 months
B. 4 months | A. \$52K
B. \$88K | | 4 | Flux of dissolved phase contaminants | - design parameter for the cap
- assess impacts of delayed removal
of source | - use existing groundwater data and flux
calculation from the Aerovox Phase 2 and Phase
3 reports for screening level assessment
- field measurement of flux | tlow model application to evaluate | Mike Morris +
Dan Groher | A. 2 months
B. 4 months | A.\$63K**
B. \$30K | | 5 | Physical characterization of the ambient sediment | - design parameter for the cap | - conservative assumption of sediment
properties based on previous experience and
data from comparable sites | - sub-bottom profiling
- CPT
- collection of cores for lab analysis | Steve Wolf | A. 1 week
B. 5 months | A. \$3K
B. \$30-120K | | 6 | Gas ebulition | - design parameter for the cap | - literature review of cap design and
performance at comparable sites
-Perform "sensitivity" analysis to assess gas
production rates that would be problematic | - enlist support of an ebulition
specialist + collection of site specfic
data
- possible bench scale test | Dan Groher | TBD | TBD | | 7 | Wave and current energy | - design parameter for the cap | - boat based measurements
- localized hydrodynamic model application
(note that this is being performed to support all Upper Harbor work) | | John Lally | 3 months | \$120K** | | 8 | Ice impacts | - design parameter for the cap | - ice scour model application
(note that this is being performed to support all Upper Harbor work) | | Mike Morris +
Tuthill | 1 month | \$12K | | 9 | Construction complexity/impacts | - incorporate into cost estimate
- defensibility of remedy | - review of comparable sites | nerform limited value engineering | A. John Lally
B. Corps | A. 2 weeks
B. TBD | A. \$10K
B. TBD | | 10 | Ecological functionality of completed cap and impact on surrounding area | - design parameter for the cap
- defensibility of remedy | - definition of biologically active zone
- review of comparable sites
- calculation in changes to riverway cross
sectional area | - incorporation into updated functions
and values assessment | Atlantic Ecology
Lab? | A. TBD
B. TBD | A. TBD
B. TBD | | | Presumptive cap design starting
point - Silver Lake (Pittsfield MA) | - similar conditions to NBH
- post-cap data indicates highly
successful performance | - EPA presents case study | - bench scale study (column tests)
using Aerovox sediments and Silver
Lake cap design - would help evaluate
gas ebulition | Dave Dickerson +
Dan Groher | | TBD |